$1 \qquad 3x^2 + 6x + 10 = 2 - 4x$	M1	for subst for <i>x</i> or <i>y</i> or subtraction		
$3x^2 + 10x + 8 = 0$	M1	attempted or $3y^2 - 52y + 220$ [=0]; for		
(3x+4)(x+2) [=0]	M1	rearranging to zero (condone one error) or $(3y - 22)(y - 10)$; for sensible attempt at factorising or formula or		
x = -2 or $-4/3$ o.e. y = 10 or 22/3 o.e.	A1 A1	completing square or A1 for each of $(-2, 10)$ and (-4/3, 22/3) o.e.	5	
ii $3(x+1)^2 + 7$	4	1 for $a = 3$, 1 for $b = 1$, 2 for $c = 7$ or M1 for $10 - 3 \times \text{their } b^2$ soi or for 7/3 or for $10/3$ – their b^2 soi	4	
iii min at $y = 7$ or ft from (ii) for positive c (ft for (ii) only if in correct form)	B2	may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry condone error in <i>x</i> value in stated min ft from (iii) [getting confused with 3 factor] B1 if say turning pt at $y = 7$ or ft without identifying min <u>or</u> M1 for min at $x = -1$ [e.g. may start again and use calculus to obtain $x = -1$] or min when $(x + 1)^{[2]} = 0$; and A1 for showing <i>y</i> positive at min <u>or</u> M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive x^2 term or goes though (0, 10) <u>or</u> M1 for stating bracket squared must be positive [or zero] and A1 for saying other term is positive	2	11
PhysicsAndMathsTutor.com				

					1
2		any correct <i>y</i> value calculated from quadratic seen or implied by plots	B1	for $x \neq 0$ or 1; may be for neg x or eg min.at (2.5, -1.25)	
		(0, 5)(1, 1)(2, -1)(3, -1)(4, 1) and $(5,5)$ plotted	P2	tol 1 mm; P1 for 4 correct [including $(2.5, -1.25)$ if plotted]; plots may be implied by curve within 1 mm of correct position	
		good quality smooth parabola within 1mm of their points	C1	allow for correct points only	
				[accept graph on graph paper, not insert]	4
	ii	$x^{2}-5x+5 = \frac{1}{x}$ $x^{3}-5x^{2}+5x = 1 \text{ and completion}$	M1		
		$x^{3} - 5x^{2} + 5x = 1$ and completion to given answer	M1		2
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working	M1	or inspection eg $(x - 1)(x^2+1)$ or equating coeffts with two correct coeffts found	
		$x^2 - 4x + 1$ obtained	A1	coeffits found	
		use of $b^2 - 4ac$ or formula with quadratic factor	M1	or $(x-2)^2 = 3$; may be implied by correct roots or $\sqrt{12}$ obtained	
		$\sqrt{12}$ obtained and comment re shows other roots (real and) irrational or for	A2	[A1 for $\sqrt{12}$ and A1 for comment]	
		$2\pm\sqrt{3}$ or $\frac{4\pm\sqrt{12}}{2}$ obtained isw		NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their	
Phys	icsAr	ndMathsTutor.com		discriminant and comment re irrational [no ft if their discriminant is negative]	5

3	$\frac{3x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	M1 for $(3x - 4)(x - 1)$ and M1 for $(x + 1)(x - 1)$	3	
---	---	---	---	---	--

4	(i) <i>n</i> = 2 <i>m</i>	M1	or any attempt at generalising; M0 for just trying numbers	
	$3n^2 + 6n = 12m^2 + 12m$ or = $12m(m + 1)$	M2	or M1 for $3n^2 + 6n = 3n(n+2) = 3 \times$ even x even and M1 for explaining that 4 is a factor of even x even or M1 for 12 is a factor of 6 <i>n</i> when <i>n</i> is even and M1 for 4 is a factor of n^2 so 12 is a factor of $3n^2$	
	(ii) showing false w n is odd e.g. $3n^2 + 6n = \text{odd} + \text{even} = \text{odd}$	B2	or $3n(n+2) = 3 \times \text{odd} \times \text{odd} = \text{odd}$ or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

5		$(x - 2.5)^2$ o.e. - 2.5 ² + 8 $(x - 2.5)^2 + 7/4$ o.e.	M1 M1 A1	for clear attempt at -2.5^2 allow M2A0 for $(x - 2.5) + 7/4$ o.e. with no $(x - 2.5)^2$ seen		
		min $y = 7/4$ o.e. [so above x axis] or commenting $(x - 2.5)^2 \ge 0$	B1	ft, dep on $(x - a)^2 + b$ with <i>b</i> positive; condone starting again, showing $b^2 - 4ac < 0$ or using calculus	4	
	ii	correct symmetrical quadratic shape	G1			
		8 marked as intercept on y axis tp (5/2, 7/4) o.e. or ft from (i)	G1 G1	or (0, 8) seen in table	3	
		$x^2 - 5x - 6$ seen or used -1 and 6 obtained x < -1 and $x > 6$ isw or ft their solns	M1 M1 M1	or $(x - 2.5)^2$ [> or =] 12.25 or ft 14 - b also implies first M1 if M0, allow B1 for one of $x < -1$ and x > 6	3	
	iv	min = (2.5, - 8.25) or ft from (i) so yes, crosses	M1 A1	or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^2 -5x -2 = 0$ or using $b^2 - 4ac$ with this and A1 for showing real solns eg $b^2 - 4ac = 33$; allow M1A0 for valid comment but error in -8.25 ft; allow M1 for showing <i>y</i> can be neg eg (0, -2) found and A1 for correct	2	
				conclusion		12

6	i	$4(x-3)^2-9$	4	1 for $a = 4$, 1 for $b = 3$, 2 for $c = -9$ or	
				M1 for $27 - 4 \times 3^2$ or $\frac{27}{4} - 3^2 [= -\frac{9}{4}]$	4
	ii	min at $(3, -9)$ or ft from (i)	B2	1 for each coord [e.g. may start again and use calculus to obtain $x = 3$]	2
	iii	(2x-3)(2x-9)	M1	attempt at factorising or formula or use of their (i) to sq rt stage	
		<i>x</i> = 1.5 or 4.5 o.e.	A2	A1 for 1 correct; accept fractional equivs eg 36/8 and 12/8	3
	iv	sketch of quadratic the right way up	M1		
		crosses <i>x</i> axis at 1.5 and 4.5 or ft crosses <i>y</i> axis at 27	A1 B1	allow unsimplified shown on graph or in table etc; condone not extending to negative <i>x</i>	3